

	

	
		
	
		
			
									John Atten

							

			
				

				

				
						Home
	About
	Contact

				
			
			
			
				
					
					Search
				

			

			
					Home
	About
	Contact

			

			

		

	
	

		
		
	
		
	
		
			
									John Atten

							

			
				

				

				
						Home
	About
	Contact

				
			
			
			
				
					
					Search
				

			

			
					Home
	About
	Contact

			

			

		

	
		

		

		
			
				C#				Splitting and Merging Pdf Files in C# Using iTextSharp

				

					John Atten
	March 9, 2013
	3

			
			
				
			

		

	

		
			
				
				

										
					

						I recently posted about using PdfBox.net to manipulate Pdf documents in your C# application. This time, I take a quick look at iTextSharp, another library for working with Pdf documents from within the .NET framework.

Some Navigation Aids:

	A look at PdfBox (Previous Post)
	Superior Performance vs. PdfBox
	Required Setup and References
	Code: Extracting a single page from an existing PDF to a new file
	Code: Extracting a range of pages from an existing PDF to a new file
	Code: Extracting multiple non-contiguous pages from an existing PDF to a new file
	iText additional resources

What is iTextSharp?

iTextSharp is a direct .NET port of the open source iText Java library for PDF generation and manipulation. As the project’s summary page on SourceForge states, iText “ . . . can be used to create PDF Documents from scratch, to convert XML to PDF . . . to fill out interactive PDF forms, to stamp new content on existing PDF documents, to split and merge existing PDF documents, and much more.”

iTextSharp presents a formidable set of tools for developers who need to create and/or manipulate Pdf files. This does come with a cost, however. The Pdf file format itself is complex; therefore, programming libraries which seek to provide a flexible interface for working with Pdf files become complex by default. iText is no exception.

I noted in my previous post on PdfBox that PdfBox was a little easier for me to get up and running with, at least for rather basic tasks such as splitting and merging existing Pdf files. I also noted that iText looked to be a little more complex, and I was correct. However, iTextSharp does not suffer some of the performance drawbacks inherent to PdfBox, at least on the .net platform.

Superior Performance vs. PdfBox

As I observed in my previous post, PdfBox.net is NOT a direct port of the PdfBox Java library, but instead is a Java library running within .net using IKVM. While I found it very cool to be able to run Java code in a .NET context, there was a serious performance hit, most notably the first time the PdfBox library was called, and the massive IKVM library spun up what amounts to a .Net implementation of the Java Virtual Machine, within which the Java code of the PdfBox library is then executed.

Needless to say, iTextSharp does not suffer this limitation. the library itself it relatively lightweight, and fast.

Extracting and Merging Pages from an Existing Pdf File

One of the most common tasks we need to do is extract pages from one Pdf into a new file. We’ll take a look at some relatively basic sample code which does just that, and get a feel for using the iTextSharp programming model.

In the following code sample, the primary iTextSharp classes we will be using are the PdfReader, Document, PdfCopy, and PdfImportedPage classes.

My simplified understanding of how this works is as follows: The PdfReader instance contains the content of the source PDF file. The Document class, once initialized with the PdfReader instance and a new output FileStream, essentially becomes a container into which pages extracted from the source file represented in the PdfReader class will be copied. Note that the Document class represents the Pdf content as HTML, which will be used to construct a properly formatted Pdf file. The result is then output to the Filestream, and saved to disk at the location specified by the destination file name.

You can download the iTextSharp source code and binaries as a single package from Files page at the iTextSharp project site. Just click on the “Download itextsharp-all-5.4.0.zip” link. Extract the files from the .zip archive, and stash them somewhere convenient. Next, set a reference in your project to the itextsharp.dll. You will need to browse to the folder where you stashed the extracted contents of the iTextSharp download.

NOTE: The complete example code for this post is available at my Github Repo.

I went ahead and created a project named iTextTools, with a class file named PdfExtractorUtility. Add the following using statements at the top of the file:

Set up references and Using Statements to use iTextSharp

using iTextSharp.text;
using iTextSharp.text.pdf;
using System;
// CLASS DEPENDS ON iTextSharp: http://sourceforge.net/projects/itextsharp/
namespace iTextTools
{
 public class PdfExtractorUtility
 {
 }
}

First, I’ll add a simple method to extract a single page from an existing PDF file and save to a new file:

Extract Single Page from Existing PDF to a new File:

public void ExtractPage(string sourcePdfPath, string outputPdfPath,
 int pageNumber, string password = "")
{
 PdfReader reader = null;
 Document document = null;
 PdfCopy pdfCopyProvider = null;
 PdfImportedPage importedPage = null;
 try
 {
 // Intialize a new PdfReader instance with the contents of the source Pdf file:
 reader = new PdfReader(sourcePdfPath);

 // Capture the correct size and orientation for the page:
 document = new Document(reader.GetPageSizeWithRotation(pageNumber));

 // Initialize an instance of the PdfCopyClass with the source
 // document and an output file stream:
 pdfCopyProvider = new PdfCopy(document,
 new System.IO.FileStream(outputPdfPath, System.IO.FileMode.Create));
 document.Open();

 // Extract the desired page number:
 importedPage = pdfCopyProvider.GetImportedPage(reader, pageNumber);
 pdfCopyProvider.AddPage(importedPage);
 document.Close();
 reader.Close();
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

As you can see, simply pass in the path to the source document, the page number to be extracted, and an output file path, and you’re done.

If we want to be able to a range of contiguous pages, we might add another method defining a start and end point:

Extract a Range of Pages from Existing PDF to a new File:

public void ExtractPages(string sourcePdfPath, string outputPdfPath,
 int startPage, int endPage)
{
 PdfReader reader = null;
 Document sourceDocument = null;
 PdfCopy pdfCopyProvider = null;
 PdfImportedPage importedPage = null;
 try
 {
 // Intialize a new PdfReader instance with the contents of the source Pdf file:
 reader = new PdfReader(sourcePdfPath);

 // For simplicity, I am assuming all the pages share the same size
 // and rotation as the first page:
 sourceDocument = new Document(reader.GetPageSizeWithRotation(startPage));

 // Initialize an instance of the PdfCopyClass with the source
 // document and an output file stream:
 pdfCopyProvider = new PdfCopy(sourceDocument,
 new System.IO.FileStream(outputPdfPath, System.IO.FileMode.Create));

 sourceDocument.Open();

 // Walk the specified range and add the page copies to the output file:
 for (int i = startPage; i <= endPage; i++)
 {
 importedPage = pdfCopyProvider.GetImportedPage(reader, i);
 pdfCopyProvider.AddPage(importedPage);
 }
 sourceDocument.Close();
 reader.Close();
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

What if we want non-contiguous pages from the source document? Well, we might override the above method with one which accepts an array of ints representing the desired pages:

Extract multiple non-contiguous pages from Existing PDF to a new File:

public void ExtractPages(string sourcePdfPath,
 string outputPdfPath, int[] extractThesePages)
{
 PdfReader reader = null;
 Document sourceDocument = null;
 PdfCopy pdfCopyProvider = null;
 PdfImportedPage importedPage = null;
 try
 {
 // Intialize a new PdfReader instance with the
 // contents of the source Pdf file:
 reader = new PdfReader(sourcePdfPath);

 // For simplicity, I am assuming all the pages share the same size
 // and rotation as the first page:
 sourceDocument = new Document(reader.GetPageSizeWithRotation(extractThesePages[0]));

 // Initialize an instance of the PdfCopyClass with the source
 // document and an output file stream:
 pdfCopyProvider = new PdfCopy(sourceDocument,
 new System.IO.FileStream(outputPdfPath, System.IO.FileMode.Create));
 sourceDocument.Open();

 // Walk the array and add the page copies to the output file:
 foreach (int pageNumber in extractThesePages)
 {
 importedPage = pdfCopyProvider.GetImportedPage(reader, pageNumber);
 pdfCopyProvider.AddPage(importedPage);
 }
 sourceDocument.Close();
 reader.Close();
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

Scratching the Surface

Obviously, the example(s) above are a simplistic first exploration of what appears to be a powerful library. What I notice about iText in general is that, unlike some API’s, the path to achieving your desired result is often not intuitive. I believe this is as much to do with the nature of the PDF file format, and possibly the structure of lower-level libraries upon which iTextSharp is built.

That said, there is without a doubt much to be discerned by exploring the iTextSharp source code. Additionally, there are a number of resources to assist the erstwhile developer in using this library:

Additional Resources for iTextSharp

	iTextSharp Site
	iTextSharp Project on SourceForge
	iTextSharp Source and dll Download (ZIP file)
	iText API Reference (this refers to the original Java library, but is useful nonetheless)
	Afterlogic iTextSharp API Documentation

Lastly, there is a book authored by one of the primary contributors to the iText project, Bruno Lowagie:

	iText in Action (Second Edition) by Bruno Lowagie CodeProject John on Google

CodeProject John on Google

						
													

						
						
	
		
			C#iTextPdfBox		

			Share:
	
	
	
	
	
	

	

					

					
	
		
			
				
				
					Author
					@xivSolutions	
					
						John Atten
					
						
				

			

			

			

				

		

	
					
	
		
			Related Articles

		

				
			

			
				CodeProject				Git: Setting Sublime Text as the Default Editor for Git (Linux Mint/Ubuntu)

			

		
				
			

			
				C#				C#: Query Excel and .CSV Files Using LinqToExcel

			

		
				
			

			
				ASP.Net				DNVM, DNX, and DNU – Understanding the ASP.NET 5 Runtime Options

			

		
		
	

					
	
	

		

		
			Comments

		

		

			
			
					
				
					
						
					

					
						
							
								
									John Atten

									Author
									Reply								

								
									March 22, 2013

								

							
						

						
							Thanks for reading, glad you found it helpful!

						

					

				

				

		
	
				
					
						
					

					
						
							
								
									terrell1976

									Author
									Reply								

								
									March 21, 2013

								

							
						

						
							Thanks for the wide information, very good

						

					

				

				

		
	
				
					
						
					

					
						
							
								
									Micle

									Author
									Reply								

								
									March 17, 2013

								

							
						

						
							Nice article its very usefull,

We can also submit our dotnet related article links on http://www.dotnettechy.com to increase trafic. it is kind of social networking for dotnet professionals only

						

					

				

				

		

								
			
									
				 Cancel Reply

									
																										

																		
						

					

							

			
		

		
	

				

				
	

						
										
							
	

					
				
			John Atten

			
I am a professional developer, and full-time coding enthusiast. I love learning new things and solving interesting problems. I contribute to open source projects, and spend way too much money feeding my coding habit.

						
											Latest Posts

						

											
							
								
									
									
								
								
									ASP.Net 									DNVM, DNX, and DNU – Understanding the ASP.N...

									
										Posted
										by John Atten
										on May 17, 2015
									
								

							

							Image by César Astudillo | Some Rights Reserved ASP.NET 5 introduces a new runtime model for the .NET framework which allows us...

						
											
							
								
									
									
								
								
									CodeProject 									Use Postgres JSON Type and Aggregate Functions to ...

									
										Posted
										by John Atten
										on April 22, 2015
									
								

							

							Postgres is just too cool. Because Postgres can work with both JSON and arrays as first-class data types, it is possible to...

						
											
							
								
									
									
								
								
									CodeProject 									Installing and Configuring PostgreSQL 9.4 on Linux...

									
										Posted
										by John Atten
										on April 19, 2015
									
								

							

							Installing and configuring PostgreSQL on a Linux box is either simple, because you are a Linux and/or Postgres expert, or not so...

						
											
							
								
									
									
								
								
									CodeProject 									A More Useful Port of the Chinook Database to Post...

									
										Posted
										by John Atten
										on April 5, 2015
									
								

							

							Image by Ingrid Talar | Some Rights Reserved I use Chinook Database as the sample database for a lot of things, primarily...

						
											
							
								
									
									
								
								
									ASP.Net 									ASP.NET Web API: Understanding OWIN/Katana Authent...

									
										Posted
										by John Atten
										on February 15, 2015
									
								

							

							Image by alles-schlumpf | Some Rights Reserved This is the third post in a series in which we have built up a minimal,...

						
									
			Archives

		Archives
		Select Month
 May 2015 (1)
 April 2015 (3)
 February 2015 (1)
 January 2015 (4)
 December 2014 (4)
 October 2014 (3)
 September 2014 (4)
 August 2014 (1)
 July 2014 (4)
 June 2014 (1)
 May 2014 (1)
 April 2014 (4)
 March 2014 (3)
 February 2014 (3)
 January 2014 (5)
 December 2013 (4)
 November 2013 (2)
 October 2013 (5)
 September 2013 (5)
 August 2013 (3)
 July 2013 (4)
 June 2013 (2)
 May 2013 (2)
 April 2013 (5)
 March 2013 (3)
 January 2013 (1)
 December 2012 (1)
 November 2012 (6)
 October 2012 (1)
 September 2012 (5)
 August 2012 (1)
 June 2012 (1)
 May 2012 (4)
 February 2012 (1)
 January 2012 (2)
 December 2011 (2)
 November 2011 (3)
 October 2011 (6)
 August 2011 (3)
 July 2011 (1)

Categories

CategoriesSelect Category
ASP.Net (36)
ASP.NET MVC (30)
Biggy (5)
C# (64)
CodeProject (74)
Database (13)
Excel Basics (8)
Free Internet (4)
Git (11)
Java (4)
Javascript (1)
Linux (10)
Microsoft (9)
Musings (1)
Postgres (3)
Reviews (2)
SQLite (2)
Tools (5)
Uncategorized (9)
Windows (2)
Windows Azure (5)

	
	
			

		

	
	
	
	

		
	 No More Results

		
		
	
		
			
						
								
					

				

								
					Previous Post
					Working with Pdf Files in C# Using PdfBox and IKVM

				

			
			
						
								
					

				

								
					Next Post
					Git Subtree Merge –The Quick Version

				

			
			
		

	

		
			
								
										John Atten

										

					

				
			Categories

			ASP.Net 36

	ASP.NET MVC 30

	Biggy 5

	C# 64

	CodeProject 74

	Database 13

	Excel Basics 8

	Free Internet 4

	Git 11

	Java 4

	Javascript 1

	Linux 10

	Microsoft 9

	Musings 1

	Postgres 3

	Reviews 2

	SQLite 2

	Tools 5

	Uncategorized 9

	Windows 2

	Windows Azure 5

Meta

				Log in
	Entries RSS
	Comments RSS
	WordPress.org

			

		
		
			
						

	
		
						Copyright © John Atten. 2024 • All rights reserved.
					

		
						Koala WordPress Theme by EckoThemes.
			Published with WordPress.
					

					

			

		
		

	

	

